
UNCLASSIFIED
kECURITY CLAS!,IFICAT1iON Or- THIS PAGEr

RT DOCUMENTATION PAGE
1.. P lb. RESTRICTIVE MARKtINGS

=s AD- A213 871 3. OISTRIBUTIO?4/AVAKIA111LITY OF REPORT

Zb. 0 Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
NMSU -ECE - 89-007A

1 AK0 .2S773-Z0-O6L
68. NAME OF.PERFORMING ORGANIZATION fib. OFFICE SYMBOL. 7&. NAME OF MONITORING ORGANIZATION

NewMeicoStte niersty jPARL U. S. Army Research Office

C. ADDRESS (Clt) State. and ZIP 'Code) 7b. ADDRESS (011Y, State. and ;P Code)

P. 0. Box 12211
Las Cruces, NM 88003 Research Triangle Park, NC 27709-2211

a.NAME OF FUNDING ISPONSORING 6 b, OFFICE SYMBOL. 9. PROCUREMENT INSTRUMENT IDENTIFICAsION NUMBER
ORGANIZATION if aplcbe
U. S. Army Research Office ______.)4AL03- -??--66

6c_ ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM IPROJECT ITASK(WORK UNIT

Research Triangle Park, NC 27709-2211 EMNTO.IN No ACESO O

11. TITLE (Incude Security Oauriktion)

(U) ARGOS - A Iresearch GMKP Operating System: Overview and Interfaces (U)

12. PERSONAL. AUTHOR(S) ErcEJonn

13a. TYPE OF REPORT 13b. TIME COVERED 4 DATE OF REPORT (YsrMontkDay) S.PAGE COUNT
Research FROM TO89 Aujzust F 7

16. SUPPLEMENTARY NOTATION
The view, opinions and/or findings contained in this report are those

of heauh (~.ad h ld not be coasn sa ffc~gl D~ rm of-the Army position,

17. COSATI CODES 18. SUBJECT TERMS Contiue an rvemn if neceuaay and identify by biock number)

FIEL GROP SBGRUP iultiprocessor, operating system, message passing,

GMMP architecture'

,19. AeSTRACT (Continue an reve if necemary and identify by block numbed)

---This report presents an overview of A Research GIIMP Operating System (ARGOS) develoned
at 'the NMSU Parallel Architecture Research Laboratory for the prototype Virtual Port
Memory multiprocessor. ARGOS is an initial attempt to realize the reliability and

*performance benefits expected of GMMP multiprocessors.
After a review of CNMP architectures and the Virtual Port Memory machine, the

structure and philosophy of ARGOS are presented, followed by interface-level descriptions
of each of the system modules. Later reports will present detailed individual
discussions of the implementations of these modules. I/,I ,-..* '

.20. DISTRIBUTION 1AALITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

fia. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE tlcA Area Code) 22c. OFFICE SYMBOL

11) FOR&4 1473. s4 MAR 43 APR edition may be used until exh~austed. SECURITY CLASSIFOCAr'IO# OF THIS PAGE
AN othe.r aditions are obsoletip. ~ ~\UNCLASSIFIED.

ARGOS
A RESEARCH GMMP OPERATING SYSTEM:

OVERVIEW AND INTERFACES

ERIC E. JOHNSON

NMSU-ECE-89-007A AUGUST 1989

SUPERSEDES NMSU-ECE-89-007, APRIL 1 989

This work was supported by the U.S. Army Research
Office under contract # DAAL03-87-K-0 106,
and by a grant from the AT&T Foundation.

TABLE OF CONTENTS

TABLE OF CONTENTS

A BSTRA CT .. 1

1. IN TRO D UCTIO N ... 1

1.1 G M M P Architectures .. 1

1.2 The V irtual Port M em ory M achine ... 3

1.2.1 Conceptual M odel .. 3

1.2.2 Prototype Im plem entation ... 5

1.2.2.1 Processors .. 6

1.2.2.2 G lobal M em ory .. 7

1.3 Virtual M em ory Structure ... 10

1.4 Operating System Requirem ents .. 11

2. A RG O S .. 12

2.1 A RG OS Structure .. 12

2.2 Processes .. 13

2.3 M essage Passing. ... 14

2.4 File System .. 16

2.5 Structure of M odule Descriptions ... 18

3. LOCA L A G EN CY .. 19

3.1 Function ... 19

3.2 Function Calls ... 23

3.2.1 PO SIX Interface .. 23

3.2.1.1 Process M anagem ent Prim itives ... 24

3.2.1.2 Process Environm ent Prim itives ... 25

3.2.1.3 File Management Primitives 26

TABLE OF CONTENTS

3.2.1.4 Input/O utput Prim itives ... 28

3.2.2 G M M P Functions .. 28

3.2.2.1 M em ory M anagem ent ... 28

3.2.2.2 M essage Queue M anagem ent ... 29

3.2.2.3 Com m unication / Synchronization .. 30

3.2.3 Process Control Functions .. 31

3.3 M essages A ccepted .. 33

3.4 M essages G enerated .. 35

4. FILE M A N A GER ... 38

4.1 Function. ... 38

4.2 M essages Accepted ... 39

4.3 M essages G enerated .. 41

5. O BJECT M A NAGER ... 42

5.1 Function. .. 42

5.2 M essages Accepted .. 43

5.3 M essages Generated .. 45

6. PA G ER 48

6.1 Function 48

6.2 M essages A ccepted .. 50

6.3 M essages Generated .. 53

7. PA G E FRA M E M A N AG ER ... 55

7.1 Funiction .. 55

7.2 M essages Accepted .. 56

7.3 M essages G enerated .. 56

i i l l i I i| i H I I I I II"

TABLE OF CONTENTS

8. D ISK M A NAGERS ... 57

8.1 Function. ... 57

8.2 M essages Accepted .. 58

8.2.1 Allocation .. 58

8.2.2 File I/O .. 59

8.2.3 Paging ... 60

8.2.4 Disk M anagem ent .. 60

8.3 M essages Generated ... 61

9. PE ALLOCATOR .. 62

9.1 Function. ... 62

9.2 M essages Accepted .. 62

9.3 M essages Generated .. 63

10. U SER INTERFACE .. 64

10.1 Function ... 64

10.2 M essages Accepted .. 64

10.3 M essages Generated .. 65

11. OTHER PROCESSES .. 68

11.1 1/O Device Drivers .. 68

11.2 Nam e Server .. 68

CON CLUSION ... 69

ACKNOW LEDG EM ENTS .. 69

REFERENCES ... 70

G LOSSA RY .. 71

iii

INTRODUCTION

ARGOS - A RESEARCH GMMP OPERATING SYSTEM:

OVERVIEW AND INTERFACES

ERIC E. JOHNSON

ABSTRACT

This report presents an overview of A Research GMMP Operating
System (ARGOS) developed at the NMSU Parallel Architecture
Research Laboratory for the prototype Virtual Port Memory
multiprocessor. ARGOS is an initial attempt to realize the reliability
and performance benefits expected of GMMP multiprocessors.

After a review of GMMP architectures and the Virtual Port
Memory machine, the structure and philosophy of ARGOS are
presented, followed by interface-level descriptions of each of the
system modules. Later reports will present detailed individual
discussions of the implementations of these modules.

1. INTRODUCTION

1.1 GMMP Architectures

GMMP multiprocessor architectures [3, 6] are global memory architectures

optimized for the message-passing model of computation, in which process access

environments are strictly isolated. Such architectures attempt to realize both the high

performance and relatively simple code and data partitioning of shared memory

multiprocessors, and the reliability and verifiability claimed for the message-passing

model. A distinct advantage enjoyed by GMMP multiprocessors over traditional

"shared memory" (GMSV) machines is the freedom to employ large caches to reduce

proe,.oor-memory traffic and average memory access times without a necessity to

maintain cache consistency, due to the isolation of process access environments [6].

INTRODUCTION

The programmer's model of a GMMP multiprocessor is shown in Figure 1.1.

Semantically, programming a GMMP machine is similar to programming a

distributed-memory message passing, or DMMP, machine (e.g., a hypercube) except

that achieving high performance does not require explicit duplication of code and

data, a common strategy for DMMP machines despite the resulting inefficient use of

limited physical storage at the processing elements.

Message Channel (High BW)

Process Process Process

Private Private Private
Memory Memory Memory

(physical memory)

Figure 1.1: Virtual Port Memory Architecture (Programmer's Model)

Global memory machines (GMSV and GMMP) may efficiently perform message

passing via re-mapping pages of virtual memory. Using this technique, data may be

"moved" from one process access environment to another by merely duplicating page

table entries and sending the virtual address of the data (a pointer or capability), rather

than by copying data values over an interprocessor or processor-memory channel.

Because arbitrarily large data structures may be re-mapped in microseconds, such

virtual message passing appears to have very high bandwidth and low, fixed latency.

(To maintain strict isolation of process access environments, pages which become

INTRODUCTION

physically shared due to this re-mapping must be flagged for copy-on-write

protection.)

1.2 The Virtual Port Memory Machine

The Virtual Port Memory machine under construction at New Mexico State

University [4, 5, 71 is intended to evaluate the potential of such GMMP architectures

to combine the best attributes of both the shared memory and the message passing

paradigms while avoiding many of their drawbacks. The features included in the

virtual port memory architecture were chosen specifically to explore this class of

multiprocessor architectures, and to try to realize their inherent benefits.

In brief, a virtual port memory multiprocessor architecture provides a hardware

structure, which includes a global memory with integral address translation and page

copy hardware and a broadcast message network, to support a GMMP virtual

machine, which provides each process of a computation or concurrent system with an

isolated access environment within the system virtual memory and by-value message

passing.

1.2.1 Conceptual Model

The Virtual Port Memory implementation of the programmer's model of Figure

1.1 is shown conceptually in Figure 1.2. The isolated access environments of the

programmer's model are implemented by address mapping, performed by the address

translator in the global memory controller (supported by access checking at the PE

when required). The ports shown in Figure 1.2 correspond (conceptually) to process

capability lists; these "virtual ports" to memory give the architecture its name.

3

INTRODUCTION

Message Channel (Low BW)

PE PE PE

I t Poprt Iprt
ADDRESS TRANSLATOR

GLOBAL
MEMORY

PAGE COPIER

Figure 1.2: Virtual Port Memory Architecture (Conceptual Model)

The high-bandwidth interprocess message channel employed by the programmer

to pass data by value (Figure 1.1) is implemented as a much lower-bandwidth

interprocessor message channel (Figure 1.2); as noted previously, this physical

channel generally carries pointers to (or capabilities for) data rather than data values,

and therefore requires relatively jittle bandwidth to support a large "virtual" message

passing bandwidth.

A noteworthy feature of the VPM architecture is the inclusion of "page copy"

hardware in the global memory controller, which performs memory-to-memory data

transfers at high speed without consuming bandwidth on the processor-memory

network. This unit, which is accessed by messages as a system process, is primarily

used to perform the copying of pages incurring copy-on-write faults, but is available

for general use as well. Due to the sequential nature of its accesses, this unit can take

full advantage of the especially efficient access modes available in current dynamic

memory technology.

4

INTRODUCTION

1.2.2 Prototype Implementation

The NMSU prototype Virtual Port Memory machine is shown in Figure 1.3. It is

bus-based, with a dedicated interprocessor channel, the Interprocess Message Bus

(IMB), and a pipelined processor-memory channel consisting of a Data Transfer Bus

(DTB) and a separate Transaction Request Bus (TRB).

UlP l T OC /
TBus

PE PE

TRB

Memory
Control

BANKS OF SHARED MEMORY

Figure 1.3: Bus-Based VPM Prototype

Requests for memory cycles are sent from processors to the memory controller

over the TRB. The memory controller translates the virtual addresses contained in

transaction requests to physical addresses, and queues each translated request for

5

INTRODUCTION

subsequent action by the appropriate bank of the global memory. When a request

reaches the head of the queue in a memory bank, the cycle controller for that bank of

memory runs the requested cycle and coordinates the transfer of data between the

processor and the memory over the DTB.

1.2.2.1 Processors

The processors shown in Figure 1.3 are of three types: processing elements (PE),

which execute application and system programs; user interface processors (UIP),

which communicate with user workstations and execute shell (command interpreter)

processes; and I/O controllers (IOC), which manage other I/O transfers. All three

types of processor interact with each other via the IMB, and access the global memory

using the TRB and DTB.

The major components of a prototype general purpose processing element are

shown in Figure 1.4. Each PE contains a 16 MHz 68020 microprocessor with a

68882 floating point co-processor, and a two-way set associative data/instruction

cache with a four tyte line size and a total capacity of 256 KBytes. (This short line

size seems adequate for image processing, but will certainly need to be lengthened for

other applications; the second generation of this prototype machine will employ a

128-bit DTB and a cache line size of 16 or 32 bytes.)

The cache controller is a micro-coded state machine; when activated by a cache

miss, it generates transaction request(s) to the global memory and performs data

transfers over the DTB as directed by DTB control signals generated at the global

memory. The message unit consists of send and receive FIFOs under state machine

control. Access checking is performed by a lookup table in RAM, indexed by

segment number and a local PE process number.

6

INTRODUCTION

DTB TRB IMB

local
bus

CACHE -4 10 EU

Erro Faul Interrupt

SAccess

Check

CACHE

CONTROLL I-RMS

~UNIT

Figure 1.4. Prototype VPM Processing Element

1.2.2.2 Global Memory

The central address translator (ATran in Figure 1.3) could become a bottleneck in

this architecture if its worst-case translation time exceeds the inter-arrival time of

transaction requests; consequently, it is designed to process transaction requests in a

fixed time matched to the speed of the TRB. Conceptually, the ATran contains a

large cache of <system virtual address>l<physical address> pairs, and translates

requests which "hit" this cache in one, TRB clock cycle. Transaction requests

resulting in a miss are "kicked out" of the memory controller and returned to their

source with a fault indication, and consequently do not congest the ATran.

7

INTRODUCTION

In addition to performing virtual-to-physical address translation, the memory

controller also validates the operation requested by each transaction request, using an

access permission field from the ATran cache entry. Entries in this table contain

access rights granted to any transaction request which reaches the memory controller,

restriction of access rights on a process-by-process basis is performed at the

processing elements. Access violations detected by the memory controller result in a

fault which invokes the operating system (the Local Agent at the PE of the offending

process).

The banks of global memory are interleaved to match the memory system

bandwidth to that of the DTB. A cycle controller within each bank time-multiplexes

access to its DRAM array among transaction requests, page copy cycles, and refresh

cycles, with dynamic memory refresh requests generated locally within each bank.

The cycle controllers employ an arbiter to share access to the DTB.

The main memory (Figure 1.5) contains four interleaved banks of DRAM, each

storing 8 Mbytes (to be upgraded to 32 MBytes each). The system virtual address

space for this machine contains 256 segments of up to 1 MByte each, oriented to our

image processing applications. With such a small virtual address space, we chose to

implement the address translator as a full look-up table in fast SRAM, rather than the

more complex (and less predictable) address translation cache which is needed for a

larger ,irtual a:' iress space. (A VLSI address translation cache is under development

fc. in a larger second generation machine, which is intended for more general

applic'. s.) The operating system (specifically the Pager) updates this address

uh.'slation RAM using an "ATran Update" transaction request.

II~ml ilmulllllllii Im i8

INTRODUCTION

DTB IMS TRB

RFO Validation

Controller

RFO hd

RFO hd

DTB
Arbiter

Page Copy Bus I

DRAM Controller
... Array & Refresh

DIB:3g "Oy Generator'j

Cycle

DRAM Controller --
Array & Refresh
Array Generator

SCycle i

DRAM iController --
Array [& Refresh I

SGenerator

Array &Rers

Figure 1.5: Prototype Global Memory and Controller

9

nimanmmnnm~~~------ ---nu umm n gl nnn m g

INTRODUCTION

1.3 Virtual Memory Structure

ARGOS supports a somewhat unusual model of virtual memory, particularly so in

light of its intended use in a GMMP environment with strictly isolated process access

spaces. Rather than the more usual per-process virtual memories, which sometimes

map into a single system-wide virtual memory before finally mapping to physical

memory, the ARGOS model of virtual memory consists of a single, segmented system

virtual address space: processes directly generate system virtual addresses without an

intermediate step of translation, with process isolation enforced by access checking

hardware at the processors.

This implementation of virtual memory has some interesting ramifications.

1) Because system virtual addresses (i.e., system segment numbers or SSNs) are

unknown before execution time, no absolute addresses may be embedded in

code segments; all code must employ indirect, PC relative, or symbolic

addressing, with symbolic reference resolution taking place at execution time.

2) Maintenance of translation tables is considerably simplified, compared to the

per-process virtual memory approach, because there is only one set of

translation tables, and only one stage of translation, all of which may be

managed by a single ARGOS process (the Pager).

3) Because address translation takes place at a system-wide level, only one address

translation cache (a.k.a. translation look-aside buffer or TLB) is needed in the

system (the ATran in our VPM machine), eliminating problems of inter-TLB

consistency which arise when each processor has a private TLB.

Because ARGOS segments are essentially files mapped into virtual memory, a

segment may be named; this name is used as a path name to place the segment in the file

system; transient segments, such as execution segments, may remain nameless.

10

INTRODUCTION

1.4 Operating System Requirements

The functions to be performed by ARGOS are dictated by the differences between

the underlying hardware constituting the "real" machine, and the desired user and

process interface and performance characteristics of the "virtual" machine which

ARGOS is to construct upon this underlying machine. The preceding sections have

presented a general description of the virtual machine with its message-passing

programmer's model and segmented virtual memory, and the Virtual Port Memory

prototype upon which ARGOS will be implemented. Before proceeding to the detailed

description of ARGOS contained in the rest of this report, it is useful here to summarize

the general requirements for ARGOS:

1) High-performance message passing, making effective use of the available

global memory.

2) Management of the segmented-paged virtual memory: allocation of segments of

virtual memory and page frames of physical memory; address translation and

maintenance of the translation tables and hardware address translator, paging.

3) Process isolation and management: verification of access rights; copy-on-write

protection and fault handling; exception handling.

4) Processor assignment and scheduling: load balancing; time-sharing; support for

real time applications.

5) File management: creation and maintenance of tree-structured file system(s);

directory searching, including permission checking.

6) I/O management: allocation of I/O resources; control of I/O traffic.

7) User interface: facilities to create, launch, observe, control, and debug parallel

applications.

11

1ARGOS

ARGOS

2. ARGOS

2.1 ARGOS Structure

ARGOS consists of a message-passing kernel which is replicated at each PE, and a

group of system processes each of which manages a distinct class of resources; the

initial implementation includes the following modules (see Figure 2.1):

1) local agents at each processing element which pass messages, schedule

processes on their processors, and handle exceptions,

2) a file manager (FileMan), which manages the file system(s), searches

directories, and checks access permissions for files,

3) an object manager (ObMan), which allocates and manages segments of the

system virtual memory,

4) a Pager which implements demand paging and manages virtual to physical

address mapping and the ATran,

5) a page frame manager (PFM), which allocates and recovers physical memory,

6) device managers such as DiskMan, which run on dedicated I/O controllers, and

manage their respective I/O devices,

7) a PE allocator (PEA), which assigns processes to processing elements,

8) and user interface processes (ULPs), which run on user interface processors,

and execute, or launch processes to execute, user commands.

These processes maintain their resource management data structures in strict

isolation from one another, and interact only by passing messages. This eliminates

many of the low-level concurrency-related problems often faced by operating system

designers, although certainly leaving a number of issues still to be addressed by careful

design.

12

ARGOS

IMB

Global Local Agefi Local AgenM Local Ag.. 421oiLca
Memory ANDC UMnWt

TRBDTB U

Figure 2.1: ARGOS Structure

2.2 Processes

An ARGOS process (system or application) may be viewed as a thread of control

within an isolated access environment, or equivalently as a time sequence of snapshots

describing the evolution of the alterable segments of that environment. A process

access environment consists of at least two types of segments: code segments (static),

and segments which record the execution of the process (dynamic). In particular, a

process is created with access to at least two segments: its initial code segment, from

which it will begin to fetch and execute instructions, and its execution segment (ExSeg)

which contains most of the data structures which are peculiar to that process; these

include its process structure (similar to Unix u area), kernel and user stacks, and a heap

(Figure 2.2). A process may inherit or acquire access rights to additional segments:

these rights are noted in its process structure.

The process structure contains fields for, among other things, process state and

scheduling priority, process IDs of self and parent, a table of message queues (see next

section) and a mask for sleeping on a set of message queues, a list of accessible

13

ARGOS

segments and access modes (similar to a capability list), the segment number of the

present working directory, a table of file descriptors for open files, a table of signal

actions, sleep and alarm timers, real and effective user IDs (uids) and group [Ds

(gids), the user's login name, and the message queue ID of the controlling UIP.

t
HEAP

PROCESS
STRUCTURE

MASTER
STACK

USER
STACK

Figure 2.2: Execution Segment

2.3 Message Passing

Interprocess communication and synchronization in ARGOS occur via messages

sent by one process to a message queue owned by another process. The process which

creates a message queue permanently owns the queue, and communicates its

willingness to receive messages through this queue by sending a message queue

identifier (MQID) to potential message originators. MQIDs, used by the message-

passing hardware to route and receive messages, are formed by concatenating a short

index number to the system segment number (SSN) of the execution segment of the

owning process: <mqid> ::= <ExSeg SSN> <index>.

14

ARGOS

Every ARGOS process is created with two message queues: one for use in process

management, called its kernel message queue (index = 0), and one for receiving replies

to locally-generated requests, called its reply queue (index = 1). When a process is

created, the returned pid, or process identifier, is the kernel message queue number of

the new process. The message queue name space is managed by the local agents. Link

establishment, termination, and notification of termination are handled above ARGOS,

by the processes desiring such services.

The message-passing hardware in the Virtual Port Memory machine uses the

following format for messages:

Destination MQID Reply MQID

Coun Command Message IDCount I

Data Words

Figure 2.3: ARGOS Message Format

The Destination MOID is used by message receivers to identify messages destined for

local processes, and by local agents to locate the correct data structures to receive

message contents. The Reply MOID is used for replies to service requests; a reply always

echoes the Message ID of the request, so that the requesting process can correctly

interpret the reply. The Word Count field indicates the number of 32-bit data words

which follow the two-word header; a count of zero is not unusual. The Command field,

15

ARGOS

used only by system processes, encodes brief requests within the message header.

Each message type listed in the following chapters is distinguished by the value of its

Command field; for example ACK is encoded as 0, NAK as -1, and so on. User process

messages have a Command field of zero, and pass all information in data words.

2.4 File System

The ARGOS file system structure is quite similar to that of UNIX [1]. A file

system is composed of a tree structure of directories, and one file system may be

mounted as a sub-tree of dnother file system. As in UNIX, a single physical disk may

contain multiple file systems, each residing in a distinct partition of ihe disk.

File management data are maintained in file headers, which are analogous to UNIX

inodes. The information in each file header is partitioned into two records: afile access

record, which is managed by the FileMan, and thefile index, which is managed by the

Pager. File headers are stored as the final bytes of file header blocks near the beginning

of each disk partition. Each file header block also contains the final "fragment" of file

data; this arrangement is expected to reduce disk arm movement somewhat, especially

for small files which will fit entirely within the file header blocks.

0 1 2 3BootI FieSysl I Id Id HdrT-a, I 'Data
Blk Block Block

Tail fragment of file data File Access Record File Index

Figure 2.4: ARGOS File System Structure

16

ARGOS

The file access record contains fields for owner uid and gid, access permissions

(read, write, and execute/search for owner, group, and world), file type, access times,

link count, and file size (in bytes). The file index contains block numbers for 24 direct

blocks, one indirect block, one doubly-indirect block, and one triply-indirect block.

In addition to managing space on its disks, and performing reads and writes to

them, each DiskManager manipulates the header blocks of the file systems in its charge.

The FileManager reads and writes file access records indirectly via messages to

DiskManagers; the Pager likewise uses messages to access and update file indices and

to request disk 1/O. Messages to the Disk Managers are addressed to message queues

whose mqids are also used as file system numbers (fsn); each file system has a distinct

message queue. The parameters in these messages are block numbers, when direct I/O

is requested, orfile numbers (fn) when access to a header block is required; the disk

manager computes the block number of a header block as fn + 2 (skipping over the

boot block and file system header). File number 0 is always the root directory of the

file system.

Under ARGOS, files are accessed by mapping them into segments; unless a file is

to be executed, this mapping is direct: byte 0 of a file appears as byte 0 of a segment,

and so on. Executable files, however, may contain code and data which must be placed

in more than one segment for execution; loading of executable files is performed by

local agents in response to the exec () system call.

17

ARGOS

2.5 Structure of Module Descriptions

The remaining chapters of this report each discuss one of the modules composing

ARGOS, beginning with the Local Agency, and continuing through all of the system

processes. For each module, a brief description of its function is given first, followed

by lists of the service request messages it recognizes, and of the service request

messages it generates. More detailed discussions of the individual processes may be

found in the reports on those processes.

Where information in this report conflicts with information in the detailed reports,

the more recent version may be assumed to reflect the current implementation. When

this report was written, ARGOS had, we hoped, concluded its period of rapid

evolution, but steady change was still anticipated, as ARGOS was intended as a vehicle

for operating systems research.

In the descriptions which follow, function arguments and message fields enclosed

in square brackets are optional as in exec (path, (argv]), where path is required

but argv is optional.

Many of the terms and acronyms used in these descriptions are explained in the

Glossary at the end of this report.

18

LOCAL AGENCY

3. LOCAL AGENCY

3.1 Function

The "kernel" of ARGOS consists of code replicated at each processor which

contains routines for passing messages, scheduling the local processor, and handling

hardware-detected exceptions; processes executing this code are collectively called the

"local agency." The local agency at each processor comprises a Clerk (an interrupt

service routine which handles incoming messages) and local agents, which are the

master-mode* phases of application and system processes resident on that processor.

The Clerk, as an interrupt service routine, executes in 68020 interrupt mode within the

context of the interrupted process; it is not a process in its own right.

The sending of messages is accomplished directly by local agents, which gather the

header and data words of messages, load them into a hardware FIFO, and write

command words to a control register to send the FIFO contents over the Interprocessor

Message Bus (IMB). The sending local agent doesn't release the message sending

hardware until it either has successfully sent its message, perhaps after a number of

retransmissions, or has exhausted its retry count and given up. Here, successful

transmission requires only an indication from the hardware that message receiving

hardware on some processor has acknowledged receipt of the message.

Message receipt, on the other hand, is completely asynchronous to process

execution. The receiver hardware continuously monitors the IMB for the start of a

message; when a new message begins, the destination mqid is presented to a lookup

table (in static RAM) to determine if the queue belongs to a process resident on the local

* The 68020 supports user, master, and interrupt modes, each with a separate stack,

the latter two "supervisor" modes permit execution of privileged instructions.

19

LOCAL AGENCY

processor. If it does, the receiver copies the header and data words from the 1MB into a

receive FIFO, while watching for the end of the message. At the end of the message,

the hardware stops loading the FIFO, sends a hardware acknowledgement, and

generates an interrupt to the local processor which invokes the message receipt interrupt

service routine, the Clerk.

(user Md

LA

(riaster Mlode)

Shared System
Data Structures 14terrupt

I NB

Figure 3.1: Local Agency

The Clerk examines the command field and destination mqid in each received

message; the message is then placed in the appiopriate process message queue in

20

LOCAL AGENCY

system virtual memory, unless it is addressed specifically to the Clerk, or contains a

command which directs the Clerk to manipulate the addressed process (e.g., add a new

segment to its access environment). The virtual address of a message queue is found as

follows: the segment number of the ExSeg of the receiving process is extracted from

the mqid (see §2.3); the remaining field in the mqid is then used to index into the

message queue table in the process structure in that ExSeg; this table contains the

addresses for the head and tail of each message queue.

Processes become Local Agents by entering master mode; this can occur only in the

following ways: system calls, access faults, or program faults. Although such

program faults as division by zero may optionally be handled by user-supplied

routines, these routines execute in user mode; all code executed in master mode is

ARGOS code.

Access faults, whether detected locally or by the global memory address translator

(ATran), raise a 68020 bus error (BERR) exception, which causes the faulted process

to execute the BERR handler in master mode Unautherized accesses to a segment are

detected locally, and normally result in process termination. Faults uetected at the

ATran result from ATran cache misses, page faults, or unauthorized accesses to

specific pages of authorized segments. Many of these faults may be repaired via

messages sent to other ARGOS processes by a Local Agent, after which the faulted

access may be successfully completed.

Unix-style file I/O is simulated by the local agency by mapping files into segments

of virtual memory, and maintaining a file pointer to identify the next byte to be "read"

or "written." Paging these mapped files results in some similarity with the Unix block

buffer cache [I.

21

LOCAL AGENCY

Executable files are formatted as shown in Figure 3.2. The Load Header contains

flags indicating the type of processor required to execute the code in the file, and other

details about the file as a whole, the number of sections composing the file, and a

template for portions of the execution segment for the file, including initial contents of

processor registers and of the Master and User stacks. Each Section Header contains

type, size, and memory mapping parameters for each section of the file. Finally, the

executable file contains the sections of code and data to be mapped into virtual memory,

each aligned within the file so that it maps into memory starting at a page boundary.

LOAD HEADER

SECTION HEADER 1

SECTION HEADER N

SECTION 1 (CODE)

SECTION N

Figure 3.2: Executable File Format

22,.

LOCAL AGENCY

In response to an exec () function call, the local agent allocates a nameless

segment to become the ExSeg for the new process, maps the Load Header and Section

Headers into the middle of this segment so that the templates for the user and master

stack and the process structure are correctly located, and reads the Section Header data

to determine what to do with the remainder of the file. After the various sections have

all been mapped appropriately, the Section Headers are overwritten with the initial heap

contents for the new process (e.g., argv and environment strings); after any other

changes to the new process' environment have been made, the new process is entered

into the local process table and becomes eligible for scheduling.

3.2 Function Calls

Interaction between resident processes and the local agency occurs via a system call

interface. The functions composing this interface are the Unix-like POSIX functions

[2], augmented by a set of GMMP-specific functions for inter-process communication

and management of the segmented virtual memory, and a set of process control

functions for real-time applications.

3.2.1 POSIX Interface

The ARGOS implementation of the POSIX interface is intended to be as complete

as possible given the message-passing model. The following system calls are

supported; their effects comply with the POSIX definitions, but may not completely

mimic the actions assumed by Unix programmers.

23

LOCAL AGENCY

3.2.1.1 Process Management Primitives

fork([optionsi) forks a new process on the same

processing element; new process shares

read- or execute-only segments with

parent; alterable segments are marked

copy-on-write; options include sole use

of PE, and prefetching and locking all

segments in memory; returned p id is the

kernel message queue number of the new

process.

exec.(path, [argv]) replaces process image.

wait([stat loc]) waits for status from stopped or
waitpid(pid, [stat loc],

[options]) terminated child process(es).

exit ([status]) terminates process.

kill (pid, signo) sends a signal to a process (or process

group).

s igact (signo, act, [oact]) sets signal action, returns old action.

alarm (seconds) schedules S IGALARM signal.

pause () suspends process until it catches a signal

or is terminated.

sleep (seconds) like pause, but wakes up after seconds.

24

LOCAL AGENCY

3.2.1.2 Process Environment Primitives

getpid () get own process id.

getppid () get parent process id.

getuid () get real user id.

geteuid () get effective user id.

getgid () get real group id.

getegid () get effective group id.

setuid () set real and effective user id (if process

has privilege).

setgid() set real and effective group id (if process

has privilege).

getiogin () returns user login name.

uname () returns O/S name, version, etc.

time () returns system time.

times () returns time accounting data.

getenv (name) returns value (if any) assigned to name in

environment list.

ctermid () returns pathname to controlling terminal.

25

LOCAL AGENCY

isatty(fd) returns boolean: does fd refer to a

terminal?

ttyname (fd) returns pathname for terminal associated

with fd.

sysconf (name) returns value (or limit) of system variable

name.

3.2.1.3 File Management Primitives

chdir (path) change current working directory.

getcwd(buf, size) returns absolute pathname of current

working directory in buffer.

open (path, oflag, ..) opens file named by path, and returns a

file descriptor.

creat (path, mode) creates file with specified mode at

specified location in file system.

umask (cmask) sets file creation mask, returns previous

mask.

link (pathl, path2) atomically links existing file (pathl) to

specified directory entry (path2) and

increments reference count in inode.

26

LOCAL AGENCY

mkdir (path, mode) creates a directory.

mkfifc(path, mode,) creates a FIFO.

unlink (path) unlinks specified directory entry from file

and decrements reference count; file is

deleted when reference count decrements

to zero, and no process has the file open.

rmdir (path) removes a directory.

rename (old, new) replaces name field of directory entry.

stat (path, buf) returns file status.
fstat(fd, buf)

access (path, mode) returns boolean: can file he accessed with

mode?

chmod (path, mode) change file mode.

chown(path, owner, group) change ownerof file.

utime (path, times) set file accessed and modified times.

pathconf (path, name) query configurable pathname variables.
fpathconff(fJ, name)

27

LOCAL AGENCY

3.2.1.4 Input/Output Primitives

pipe (f d) creates a pipe, returns file descriptors for

the input and output ends of the pipe.

close (fd) deallocates a file descriptor.

read (fd, buf, nbyte) reads from a file into a buffer; returns

number of bytes read; updates file offset.

write (fd, buf, nbyte) writes from buffer to a file; returns bytes

written; updates file offset.

ffcnt 1 (fd, cmd, ...) performs control operations on open file.

Iseek (fd, offset, whence) sets file offset.

3.2.2 GMMP Functions

3.2.2.1 Memory Management

newseg (mode, max, min, [path]) allocates segment of virtual memory with

specified name (if given) and access

modes; ref count set to one; returns ssn.

map (path, [mode]) maps specified file (absolute or relative

pathname) into a segment with specified

(or file default) access modes; increments

reference count; returns ssn.

28

LOCAL AGENCY

copy (ssn) returns ssn of a new segment which

shares all pages of given segment copy-

on-write.

pushseg (ssn) if segment is named, copies modified

pages to secondary storage, else error.

memlock (ssn) prevents pages of segment from being

paged out.

munlock (ssn) allows pages of segment to be paged out;

(a segment is automatically unlocked

whenever its reference count decrements

to zero, or it is found to be unreferenced

by the garbage collector).

freeseg(ssn) removes segment from process access

space, decrements reference count.

3.2.2.2 Message Queue Management

mqcreate() creates a message queue; returns a

message queue id which may be used by

other processes to place messages in this

queue; only the creating process may read

from this queue.

mqflush (mqid) removes all messages in specified queue.

29

LOCAL AGENCY

mqdestroy (mqid) removes all messages in specified queue

and blocks further use of the queue. (The

queue id may be re-used after the creating

process has terminated.)

3.2.2.3 Communication / Synchronization

send (mqid, cmd, id, len, data, sends message to indicated message
[replyq, [time]])

queue (mqid); message contains cmd,

message icd, and a data field of length

len; if a replyq is given, the process is

blocked pending receipt of a reply to that

queue with a matching message id; if, in

addition, a time is given, this bounds

the time the process will wait for a reply.

remap (mqid, segments) remaps a list of segments from the calling

process' access environment to that of the

process which created mqid; calling

process is blocked pending a response

from the distant local agent.

30

LOCAL AGENCY

rcv (mqid, [time]) returns a pointer to a message structure

containing the source and destination

message queue ids, and the cmd, len,

id, and data fields of the first

message in the specified message queue;

the process is blocked until a message is

available; if a t ime is given, this bounds

the time that the process will wait for a

message.

mwait (mask, [time]) waits for a message from any of the

message queues selected by mask; if a

time is given, this bounds the time that

the process will wait; returns a pointer to

a message structure as for rcv.

reply (msg, len, data) sends data to reply queue specified in

msg, echoing the message id from msg.

3.2.3 Process Control Functions

getpid() returns own pid.

setpri (pri, (pid]) sets process scheduling priority; if pid is

absent, sets own priority; invokes the

scheduler.

31

LOCAL AGENCY

getpri ([pid]) returns process priority; if pid is absent,

returns own priority.

plock () running process is granted sole use of

CPU (interrupts still processed);

automatically unlocked by process

termination or suspension.

punlock () unlocks CPU, invokes scheduler.

suspend([pid]) suspends a process; if pid is absent,

suspends self; if process has locked its

CPU, the CPU is unlocked, and a flag is

set in the suspended process structure;

may invoke scheduler.

resume (pid) if process is suspended, it is returned to

Ready state; may invoke scheduler; if

process was suspended while running

with its CPU locked, it immediately

resumes running in that state.

pstatus ([pid]) returns process status.

32

• • ,., ,,=== -- ,, m,, .I~ mlHem==H i Ill am i IJ

LOCAL AGENCY

migrate ([pid]) process is detached from PE and sent to

PE Allocator for reassignment; if a pid is

supplied, PE Allocator will attempt to co-

locate migrating process with specified

process.

3.3 Messages Accepted

The Clerk at each local agency has dedicated message queues to which messages

may be addressed, which are distinct from those used by application or system

processes running on the same processing elem. '. The following messages are

recognized by local agency Clerks:

newproc (exseg) from PE Allocator; requests creation of a

new process with the given execution

environment; expects ACK or NAK.

signal (signo) from any process; addressed to a resident

process but intercepted by Clerk, which

posts indicated signal (signo) to the

destination process.

suspend () from any process; addressed to a resident

process but intercepted by Clerk, which

suspends the destination process.

33

LOCAL AGENCY

resume () from any process; addressed to a resident

process but intercepted by Clerk; if

destination process is suspended, its state

is set to Ready.

debug (from the shell process responsible for the

destination process; intercepted by Clerk;

destination process enters debug mode.

isgarbage (segments) requests determination of whether any of

the listed segments are accessible by any

local process; circulated among local

agencies, which delete segments currently

in use; originated by, and returned to,

Object Manager.

ptime () from any process; intercepted by Clerk,

which returns CPU time used by

destination process.

tick (time) from real-time clock; broadcast at regular

intervals to all Clerks; carries encoded

current time.

34

LOCAL AGENCY

3.4 Messages Generated

open (uid, gid, cwd, path, to File Manager, expects ACK with ssn if
[mode])

access granted (segment mapped), NAK if

not.

chdir (uid, gid, cwd, path) to File Manager, expects ACK with new

cwd or NAK.

chown (uid, gid, cwd, path, to File Manager; expects ACK or NAK.
newuid, newgid)

chmod (uid, gid, cwd, path, to File Manager; expects ACK or NAK.
mode)

link (cwd, pathl, path2) to File Manager, expects ACK or NAK.

unlink (cwd, path) to File Manager; expects ACK or NAK.

rename (cwd, old, new) to File Manager; expects ACK or NAK.

mkdir (cwd, patah, mode) adds a new directory to file system.

mknod (cwd, path, mode) adds a new node to file system.

newseg (mode, cwd, path]) to Object Manager, expects reply message

with ssn if successful, NAK message

otherwise; cwd I path optional.

copy (ssn, [m- de]) to Object Manager; segment copied with

(possibly reduced) acc. ss mode; expects

ACK with ssn of new segment, or NAK.

35

LOCAL AGENCY

getsz (ssn) to Object Manager; returns the current

valid virtual address range of a segment.

setsz (ssn, max, min) to Object Manager; sets the current size of

a segment.

getrfct (ssn) to Object Manager; requests the current

reference count of a segment.

incrf t (ssrn) to Object Manager; increments a segment

reference count.

freeseg (list) to Object Manager; decrements reference

count(s) of list of segments; no reply.

translate (ssn,pn,cycletype) to Pager, to repair address translation

fault; expects AC K if no fault,

suspend () followed by resume () if

page fault, or NAK if impossible.

pushseg(list) to Pager; modified pages of listed

segments written to disk; expects ACK.

remap (ssn, [mode]) to another local agency, but addressed to

a process message queue; receiving clerk

adds segment ssn to access environ-

ment of destination process wit. given

mode; expects ACK.

36

LOCAL AGENCY

signal (signo) addressed to a process but intercepted by

its Clerk, which posts indicated signal

(signo) to the destination process; sent

in response to a ki 11 () function call.

suspend () addressed to a process but intercepted by

its Clerk, which suspends the process.

resume () addressed to a process but intercepted by

its Clerk; if destination process is

suspended, its state is set to Ready.

newpe (pidl, pid2) to PE Allocator; requests migration of

process pi d 1; if pi d2 is given, requests

co-location with that process; expects

ACK, or NAK if co-location denied.

zombie (pid) to parent of a process which has stopped

or terminated (e.g., _exit ()); pid of

zombie process is carried in message

reply queue field.

37

FILE MANAGER

4. FILE MANAGER

4.1 Function

As its name suggests, the File Manager, or FileMan, is the system process

responsible for all aspects of file system management, including directory searching,

access permission checking, and the creation, deletion, opening, and closing of files

and directories. FileMan is the only process which can create, open, or modify

directories. Related functions performed by other ARGOS processes include mapping

files into segments (ObMan), paging file contents into main memory (Pager), and disk

1/0 and file header manipulation (DiskMan).

All file or directory manipulation requests from other processes are sent (via local

agents) to the FileMan. The primary FileMan data structures is a File Table, indexed by

SSN, which contains pointers to dynamically-allocated File Table Entries (FTEs), each

of which stores the following information about an open file (* items from file header):

• file system number (fsn) and file number (fn)

• owner uid and gid

• access permissions (r w x for owner, group, and world)

• file type

• access times

* link count

* mount data

* SSN of parent (..), an open sibling, and an open child (familial cone)

* reference count

* name (relative to parent directory)

38

FILE MANAGER

FileMan keeps all directories from the root to the current working directory of every

process open. When a request to open a file arrives, FileMan begins parsing the path

name at the position in the FileTable given in the message by the SSN of the process

current working directory (cwd). As each element of the path name is extracted, the

ring of open children of the current directory is examined before reading the contents of

the directory file itself, so that directories and files already open may be quickly

identified. If the name search fails in the FileTable, the directory is read to attempt to

find the file number of the requested file.

If the requested file is found, FileMan allocates a FTE, gets the file access record

from the appropriate DiskMan to fill in the FTE, and sends a message to the Object

Manager (ObMan) requesting that the file be mapped into a segment of system virtual

memory. (This same request is made by FileMan when it needs a directory opened.)

When the file has been mapped (by the Pager), the SSN of the segment is returned to

FileMan, which adds the new FTE to the FileTable, and returns the SSN to the process

which requested that the file be opened.

4.2 Messages Accepted

open (uid, gid, cwd, path, returns ACK with ssn if access granted
[mode])

(segment mapped), NAK if not.

creat (cwd, path, mode, uid, creates new directory entry at given
gid)

location with given access modes.

mkdir (cwd, path, mode) adds a new directory to file system.

mknod (cwd, path, mode) adds a new node to file system.

39

FILE MANAGER

chdir (uid, gid, cwd,path) returns ACK with new cwd or NAK.

chown(uid,gid, cwd, path, returns ACK or NAK.
newuid, newgid)

chmod (uid, gid, cwd, path, returns ACK or NAK.
mode)

link (cwd, pathl,path2) creates new directory entry given by

cwdlpathl, and links it to inode

referenced by cwd I path2; returns ACK

or NAK.

unlink (cwd, path) from a Local Agent; checks File Table for

process accessibility; if free, unlinks

name from file, removes directory entry;

if this was last link, frees file header and

releases disk space; returns ACK when

done, or immediate NAK.

rename (cwd, old, new) returns ACK or NAK.

writehdr (ssn, size, from Object Manager, update file header
modified)

data including size and access times.

close (ssn, size, modified) from Object Manager, update file header

data including size and access times; mark

File Table Entry as closed, but retain for

possible reuse until ssn reused.

40

FILE MANAGER

4.3 Messages Generated

map(fsn, fn,mode, size) to Object Manager; requests that a

segment be allocated, and that the file

given by f sn I f n be mapped into it;

expects ACK with ssn, or NAK.

reopen (ssn, mode) to Object Manager;, a file which was

previously mapped into a segment can re-

opened in place.

hdralloc () to DiskMan; allocate a new file header in

the file system indicated by the mqid;

returns f n.

hdrfree (fn) to DiskMan; free a file header; mqid is

fsn.

getfar(fn) to DiskMan; requests the file access

record from file header for the indicated

file; mqid is fsn.

put far (fn, far) to DiskMan; update file access record of

file header; mqid is fsn; returns

ACK/NAK.

41

OBJECT MANAGER

5. OBJECT MANAGER

5.1 Function

Whereas FileMan manages access to files as they are stored in file systems, the

Object Manager (ObMan) manages access to segments of virtual memory, including

files when they are mapped into segments. ObMan's responsibilities consist of the

allocation and recovery of segments of system virtual memory, management of their

sizes, and control of access to the data contained in those segments.

The principal ObMan data structure is the Object Table (ObTab), which contains

pointers to dynamically-allocated ObTab Entries (OTE), each of which holds the access

mode, fsn, fn, maximum and minimum virtual addresses, and the reference count of an

active segment. These OTEs are also linked in a hash queue by fsnlfn, so that multiple

mapping of files can be avoided.

The range of valid virtual addresses of a segment is assigned by ObMan when the

segment is created. ObMan calculates the range of valid page numbers in the segment,

and passes these values to the Pager, which then checks for out-of-bounds references

whenever an address fault occurs. A segment's size can be queried and set by

messages to ObMan. If a segment is written to disk, ObMan supplies its size to set the

file length.

When ObMan is requested to copy a segment, it assumes that copy on write

protection is required for both copies; otherwise, no copy need be made, since read- or

execute-only segments may be freely shared by merely incrementing their ObTab

reference counts. The duplicate segment initially reflects all of the pages of the original

segment, even if they have not yet been demand-paged into memory from a file, but the

42

OBJECT MANAGER

duplicate does not inherit a file name to write to; it is in that sense "nameless." Only

one segment which maps a file retains the right to write to that file.

When the ObTab reference count of a segment drops to zero, ObMan notifies the

Pager and FileMan that the segment is no longer in use; all three processes retain some

data in their tables about the segment, however, until the segment number is reused, in

order to minimize the time required to re-map the file should it be opened again soon.

A file mode bit called the "sticky" bit causes ObMan to keep a file mapped into a

segment, even when the segment's reference count drops to zero, until the FileMan

sends ObMan a message indicating that the file need be retained no longer (e.g., when

the file is unlinked or unmounted). Writing to a file need not reset its sticky bit.

5.2 Messages Accepted

map (if sn, fn, mode, size) from File Manager, allocates ssn, invokes

Pager with the given file data; returns

ACK with ssn, or NAK.

reopen (ssn,mode) from File Manager; a file which was

previously mapped into a segment can re-

opened in place.

newseg (mode, max, min, cwd, allocate a new segment; returns ACK with
path, uid, gid])

ssn if successful, NAK otherwise. cwd,

path, uid, and gid are optional; if

supplied, a creat call is made on File

Manager.

43

OBJECT MANAGER

name (ssn, cwd, path, uid, gid) from Local Agent; updates the file name

associated with a segment; a creat call

is made on File Manager (using present

mode), which expects fsn I fn.

copy (ssn, [mode]) segment copied with (possibly reduced)

access mode; returns ACK with ssn of

new segment, or NAK if unknown ssn.

write (ssn) modified pages of segment are written to

disk (Pager), and file header is updated

(FileMan).

getrfct (ssn) returns the current reference count of a

segment.

incrfct (ssn) increments a segment reference count.

freeseg (ssn) segment reference count decremented;

segment marked as free if reference count

equals zero; no reply.

getsz (ssn) returns the current valid virtual address

range of a segment.

setsz (ssn,max,min) sets the current size of a segment.

44

OBJECT MANAGER

5.3 Messages Generated

creat (cwd, path, mode, uid, to FileMan; requests creation of a new
gid)

directory entry at given location with

given access modes.

writehdr(ssn,size, to FileMan; update file header data
modified)

including size and access times.

close(ssn, size,modified) to FileMan; update file header data

including size and access times; mark File

Table Entry as closed, but retain for

possible reuse until ssn reused.

rrap (fsn, fn, mode, ssn, max, to Pager, requests that the given file be
min)

mapped into a segment of system virtual

memory with the given access modes.

remap (ssn, mode) to Pager; re-map a previously mapped

file; attempt to recover page frames

containing tables and data.

newseg (mode, ssn, max, min) to Pager, create a temporary segment with

no backing location in the file system.

45

OBJECT MANAGER

copy (mode, ssnl, ssn2) from Object Manager; create a nameless

segment s sn2 whose pages all map to

corresponding pages in s sfn 1 with copy-

on-write protection and access modes

(possibly reduced) as specified.

resize (ssn, max, min) to Pager, revise the range of valid pages

in a segment.

name (fsn, f n, ssn) to Pager; update location in file system to

use for writing a segment to disk.

flush (ssn) to Pager, requests that all modified pages

of a segment be written to file; expects

ACK or NAK when done or failed.

float (ssn) to Pager; requests that all valid pages of

segment not in memory be backed up on

paging device, and that link to file system

be severed.

free (ssn) to Pager; free any page frames in use

solely by this segment (discard modified

pages); free page table and disk index (or

PageMap) associated with segment.

/

46

OBJECT MANAGER

i sgarbage (segments) to Local Agents; requests determination

of whether any of the listed segments are

accessible by any local process; circulated

to local agencies, which delete ssns

currendy in use, and returned to ObMan.

47

PAGER

6. PAGER

6.1 Function

The Pager translates virtual addresses to physical addresses, attempting to keep the

most useful such translations cached in the ATran, and supervises the movement of

pages of virtual memory between main and secondary storage. The related function of

attempting to keep the working sets of the active processes in page frames of main

memory is properly in the domain of the Page Frame Manager.

The Pager data structures were chosen to efficiently support GMMP memory

manipulations while minimizing the amount of system virtual memory required. It was

also desired to have a single virtual address by which all copies of a copy-on-write

shared page could be named, and a single location for storage and retrieval of Pager

data related to each shared page.

The data structure chosen to support copy-on-write sharing of pages of segments is

a familial cone of segment maps (SegMaps) as shown in Figure 6. 1. Similar to a tree,

a familial cone has a single apex (root); any child has a single parent, and each child has

a pointer to its parent; the parent, however, has only a single child pointer, so all of the

children of a parent are linked in a sibling ring for access from the parent.

A SegMap data structure is allocated for each active segment, and contains sundry

information about the segment (Figure 6.2), including pointers to a page table and disk

index (apex SegMaps only) or to a PageMap (non-apex SegMaps).

An apex SegMap is created whenever a new segment is created or a file is first

mapped into a segment; it has no parent, siblings, or, initially, children. A new page

table is created, with the range of valid pages determined by maximum and minimum

page number values supplied by the ObMan.

48

PAGER

, ip apex SegMap

PageMapaetbj

PageMap disk index

Symbolic SegMapLic Isibiing disk p age parent
p y I Index table I

Figure 6.1: Familial Cone of SegMaps

parent-40

~sibling

-j childI

flags next

min page page number

max page page frame number'

page table / PageMap- PTE state

disk index reference count

current fsn I fn

update fsn I fn contains ssn in certain
cases of sharing

my cone

Figure 6.2: Format of SegMap Figure 6.3: Format of PageMap Entry

49

PAGER

If a file is associated with the new segment, the Pager sends messages to the

appropriate DiskMan to read the file index from the file header block (and, when

appropriate, indirect blocks) to build a disk index for the SegMap.

Children of a SegMap are created when the segment is copied. All pages

modifiable by either parent or child are marked for copy-on-write protection. The

PageMap of a child SegMap lists only those pages in which it differs from its parent,

and is initially empty. A PageMap entry (Figure 6.3) contains fields to store a page

number and the address of the next PageMap entry in a linked list, in addition to the

fields contained in a page table entry (PTE).

A full page table, indexed by page number (pn), is maintained only for the segment

at the apex of a cone of SegMaps. Page table entries contain fields for the page frame

number (PFN) of a page, the state of the page (invalid, demand zero, demand fill.

paged out, recoverable from PFM free list, etc.) and a reference count.

The Pager keeps a pool of allocated page frames available for ready use,

replenishing this pool as needed by messages the Page Frame Manager (PFM).

Because no process can access memory using physical addresses, the Pager is the only

process which can use PFNs, and is the only process which ever requests page frames.

6.2 Messages Accepted

translate (ssn, pn, cycletype) from a Local Agent: repair address

translation fault; returns ACK if

immediately successful, suspend ()

followed by resume () if page fault, or

NAK if impossible.

50

PAGER

map (fsn, fn, mode, ssn, max, from Object Manager; requests that the
min)

given file be mapped into the given

segment of system virtual memory with

the given access modes and range of valid

pages; pages marked "demand fill."

remap (ssn, mode) from Object Manager; re-map a

previously mapped file; attempt to recover

page frames containing tables and data.

newseg (mode, ssn, max, rin) from Object Manager;, create a temporary

segment with the given range of valid

"demand zero" pages, with no backing

location in the file system (nameless).

copy (mode, ssnl, ssn2) from Object Manager, create a nameless

segment ssn2 whose pages all map to

corresponding pages in s sn 1 with copy-

on-write protection and access modes

(possibly reduced) as specified.

resize (ssn, max, min) from Object Manager; revise the range of

valid pages in a segment.

name (fsn, fn, ssn) from Object Manager;, update location in

file system to use for writing a segment to

disk.

51

PAGER

flush (ssn) from Object Manager; requests that all

modified pages of a segment be written to

file; returns ACK when done, or NAK if

unknown ssn.

float (ssn) from Object Manager, requests that all

valid pages of segment not in memory be

backed up on paging device, and that link

to file system be severed (segment

becomes nameless).

free (ssn) from Object Manager; free any page

frames in use solely by this segment

(discarding modified pages); free page

table and disk index (or PageMap)

associated with segment.

pageout (list) from PFM, with list of pages (ssnlpn) to

be written to paging device; returns

pffree () when page is free (after disk

write if page has been modified).

pfnr (list) from PFM, with list of pages which are

no longer recoverable from PFM free list.

52

PAGER

6.3 Messages Generated

pfalloc (count) to PFM; allocate count page frames;

expects ACK with list of PFNs, or NAK.

pfassign (PFN, ssn,pn) to PFM; mark indicated page frame as "in

use" with the indicated virtual address.

pffree (list) to PFM; free the indicated list of page

frames.

pfrcvr (list) to PFM; recover indicated page frames

from free list, mark as "in use"; expects

ACK or NAK.

get index (fn) to DiskMan; requests file index of

indicated file; mqid is fsn.

putindex (fn, index) to DiskMan; update file index portion of

file header, expects ACK or NAK; mqid is

fsn.

read(fn, ssn,pn, list) to DiskMan; read list of blocks into

system virtual memory starting at

ssn I pn from file fn; mqid is fsn.

write (fn, ssn,pn, list) to DiskMan; write list of blocks from

system virtual memory starting at

s sn I pn to file fn; mqid is fsn.

53

PAGER

alloc (blocks, flags) to DiskMan; allocate blocks blocks

from file system given by mqid; may

request that blocks be contiguous.

free (list) to DiskMan; free a list of disk blocks.

get frag (fn, s sn, pn) to DiskMan; read tail fragment of file to

given virtual memory location.

put frag (fn, ssn, pn) to DiskMan; get tail fragment of file from

the indicated virtual address; mqid is fsn.

pglstsz () to paging device DiskMan; requests

number of pages in pageout batch.

pageout (list) to paging device DiskMan; write list of

pages (ssnlpn) to paging device, ACK.

pagein (ssn, pn) to paging device DiskMan; read page

from paging device; expects ACK.

pfree (ssn, pn) to paging device DiskMan; free space on

paging device occupied by page; no ACK.

pfile (ssn,pn, fsn, list) to paging device DiskMan; copy page

from paging device to 1 i st of blocks in

file system f sn, then free paging space;

expects ACK.

54

PAGE FRAME MANAGER

7. PAGE FRAME MANAGER

7.1 Function

The Page Frame Manager (PFM) manages the use of main memory: it allocates

page frames of physical memory and initiates the page-out of inactive pages. The

principal data structures of the PFM are a Page Frame Table and in-use and free lists.

The Page Frame Table contains an entry for every page frame available in the

physical address space. Each entry contains fields for the state of the page frame, a

pointer into the free list, and a virtual memory segment number and page number

associated with the page frame. Each page frame is in one of five states: unusable

(hardware missing or failed), free, allocated, in use, or locked (being freed by Pager).

Page frames are initially free. They are allocated to system processes in response to

p f a 11 o c () messages, and remain in the allocated state until assigned virtual

addresses by pfassign () messages; when a page frame is assigned a virtual

address, its state changes to "in use" and it becomes eligible for paging. Pages holding

same system data structures are never "assigned," and are therefore immune to pageout.

The PFM maintains a list of free page frames available for allocation to other

processes. When the length of this list falls below a low water mark, the PFM begins

scanning its in-use list for page frames to free. When it has collected enough page

frames to reach its high water mark, it sends the list of pages to be freed to the Pager in

a pageout () message. Upon receipt of a pf free () message in response, the PFM

marks the pages as free, and enters them on the free list. The page frames retain their

previous contents until reallocated, however, and can be recovered from the free list by

the Pager in a pfrcvr () message. When page frames previously in use are allocated

55

PAGE FRAME MANAGER

by the PFM from the free list, a pfnr () message is sent to the Pager, listing the

previous virtual addresses of page frames which are no longer recoverable.

7.2 Messages Accepted

pfalloc (count) allocate count page frames; returns list

of PFN, or NAK.

pfassign (PFN, ssn, pn) mark page frame as in use, and record its

virtual address.

pffree (list) free the indicated list of page frames.

pfrcvr (list) recover indicated page frames from free

list, mark as in use; returns ACK or NAK.

7.3 Messages Generated

pageout (list) to Pager, with list of pages; expects

pf free in acknowledgement.

pfnr (list) to Pager, with list of virtual addresses of

pages which are no longer recoverable.

56

DISK MANAGERS

8. DISK MANAGERS

8.1 Function

ARGOS disk manager processes run on the disk I/O controller (IOC) processors.

Each allocates disk space on the disk drives attached to that IOC, manages I/O transfers

to and from its disks, and manipulates the file headers in the file systems (partitions) on

those disks.

ARGOS processes specify "logical device numbers" (i.e., disk partitions) by

sending requests to the unique message queue allocated for each partition when the

system powers up; each DiskMan process itself also has a unique queue which is used

for messages not directly associated with a particular partition, such as formatting and

partitioning an entire disk. Requests for allocation of disk blocks are directed to the

message queue assigned to the file system of interest. Read and write requests are also

sent to a file system mqid (except for paging requests, as discussed below), and list the

logical block numbers to be read or written and the starting system virtual address of

the data in main memory.

Requests to read or write file headers are directed to a file system mqid, and specify

the file number (originally assigned by the DiskMan) of the desired file. The DiskMan

keeps a cache of recently-accessed header blocks, both for quick response to read

requests, and so that most header block updates can update the affected component (file

access record, file index, or fragment) in local IOC memory and then writc the block,

without requiring a preliminary disk access to read in the unaffected components.

Unlike file system I/O, in which the Pager directly uses logical block numbers, disk

management for paging is handled entirely within the DiskMan which has the paging

partition(s). Paging requests are addressed to a single message queue designated for

57

DISK MANAGERS

paging requests, and contain only the system virtual addresses of the page(s) to be

swapped in or out. The DiskMan swaps enough pages out at once to make the disk

transfer efficient, storing whatever odd lot of pages it has accumulated contiguously on

the paging device. Upon receipt of a request to swap a page back in, the DiskMan

refers to its list of swapped pages to find its location, and initiates the transfer. Pages

swapped back into memory are retained on the paging device until explicitly released.

However, pages which are transferred from the paging partition to a file system are

removed from the paging device immediately.

The latter type of transfers may require the allocation of a buffer segment in system

virtual memory when the paging device and file system are managed by different Disk

Manager processes. This requirement is a result of the decision to allow no process to

access main memory using physical addresses.

8.2 Messages Accepted

8.2.1 Allocation

alloc(blocks,flags) from Pager; allocate blocks blocks

from file system given by mqid; may

request that blocks be contiguous.

free (list) from Pager, free a list of disk blocks.

hdralloc (from FileMan; allocate a new file header

in the file system indicated by the mqid;

returns fn.

58

DISK MANAGERS

hdrfree (fn) from FileMan; free a file header.

8.2.2 File IW0

getfar (fn) from FileMan; requests the file access

record from the indicated file header.

putfar (f n, far) from FileMan; update file access record

of file header, returns ACK or NAK.

getindex(fn) from Pager; requests file index of

indicated file.

put index (fn, index) from Pager, update file index portion of

file header;, returns ACK or NAK.

read(fn, ssn,pn, list) from Pager; read list of blocks into

system virtual memory starting at

ssn I pn from file fn.

write (fn, ssn,pn, list) from Pager; write list of blocks from

system virtual memory starting at

ssn I pn to file fn.

get f rag (fn, ssn, pn) from Pager, read the tail fragment of a file

to the indicated virtual memory location.

put frag (fn, ssn, pn) from Pager, get the tail fragment for a file

from the indicated virtual address.

59

DISK MANAGERS

8.2.3 Paging

pglstsz () from Pager, requests number of pages in

pageout batch.

pageout (list) from Pager; write list of pages (ssnlpn) to

paging device, return ACK.

pagein(ssn,pn) from Pager; read page from paging

device, return ACK.

pfree (ssn, pn) from Pager, free space on paging device

occupied by page; no ACK.

pfile (ssn,pn,fsn, list) from Pager; copy page from paging

device to l ist of blocks in file system

fsn, then free paging space, and return

ACK.

8.2.4 Disk Management

format (devid, list) format a disk with the listed parameters;

returns mqid for entire disk.

part (sizes) partition a disk into file systems of the

given sizes; mqid designates disk to be

partitioned; returns mqids for the new file

systems.

60

DISK MANAGERS

init (files, blocks, boot) initialize a file system; copy boot block

from indicated system virtual address;

mqid is fsn.

fschk() requests audit of file system integrity;

mqid is fsn.

8.3 Messages Generated

newseg (mode, max, min) to ObMan; requests allocation of a buffer

segment for inter-DiskMan transfers.

freeseg(ssn) to ObMan; free a buffer segment.

read (fn, ssn, pn, list) to another DiskMan; read list of blocks

into system virtual memory starting at

ssn I pn from file fn; mqid is fsn.

write (fn, ssn,pn, list) to another DiskMan; write list of

blocks from system virtual memory

starting at ssn I pn to file fn; mqid is

fsn.

61

PE ALLOCATOR

9. PE ALLOCATOR

9.1 Function

The PE allocator process(es) assign processes to processors and initiate their

execution; one PE allocator exists for each type of PE in a system. New processes

come into being in ARGOS (after power-up) by process forking at PEs or UIPs. In the

case of PE forking, the new process may choose to execute on its original host PE, or it

may migrate to another PE via a newpe message to the appropriate PE allocator.

Processes forked at UIPs are sent to a PE allocator for PE assignment in a launch

message. In either case, a PE allocator assigns the process to a new PE, and sends it

there in a newproc message, which is received by the local Clerk. The Clerk adds the

process to the local set of processes, if space in the local process table is available.

The PE allocator(s) attempt to make intelligent decisions in assigning processes to

processors by monitoring the load on each PE via processor-specific messages

circulated among the PEs.

9.2 Messages Accepted

launch (exseg) requests creation of a new process with

the given execution environment.

newpe (pidl,pid2) requests migration of process pidl; if

pid2 is given, requests co-location with

that process; returns ACK when migration

complete, or NAK if co-location denied.

62

PE ALLOCATOR

9.3 Messages Generated

newproc (exseg) to local agency; requests creation of a

new process WiLh the given execution

environment; expects ACK or NAK.

cpuload() to a local agency; requests recent

utilization of CPU; responses are

processor-specific.

63

USER INTERFACE

10. USER INTERFACE

10.1 Function

The ARGOS user interface processes execute "shell" (command interpreter)

programs on User Interface Processors (UIP). These processes are created at system

power-up, one per attached workstation or communication port; a new processes is

forked for each connection established on a communication port. A user interface

process may be entirely resident on a UIP, or it may be split between a remote host or

workstation and local interface processor.

A user interface process carries out user commands by sending messages to the

appropriate ARGOS processes to obtain information (e.g., the contents of a file system

directory), or to launch new processes. When a new process is created, the user

interface process creates its execution segment, copying the User-level context from its

own context, and sends a launch message to the appropriate PE allocator.

10.2 Messages Accepted

zombie (pid) from a child process which has stopped

or terminated (e.g., _exit ()); pid of

zombie process is carried in message

reply queue field.

64

USER INTERFACE

10.3 Messages Generated

launch (exseg) to PE allocator, requests creation of a new

process with the given execution

environment.

debug () to a child process; intercepted by a Clerk;

child process enters debug mode.

ptime () to a child process; intercepted by Clerk,

which returns CPU time used by process.

open (uid, gid, cwd, path, to File Manager, expects ACK with ssn if
[mode])

access granted (segment mapped), NAK if

not.

chdir (uid, gid, cwd, path) to File Manager; expects ACK with new

cwct or NAK.

chown (uid, gid, cwd, path, to File Manager; expects ACK or NAK.
newuid, newgid)

chmod (uid, gid, cwd, path, to File Manager; expects ACK or NAK.

mode)

link (cwd, pathl, path2) to File Manager; expects ACK or NAK.

unlink (cwd, path) to File Manager; expects ACK or NAK.

rename (cwd, old, new) to File Manager; expects ACK or NAK.

mkdir (cwd -ath, mode) adds a new directory to file system.

65

USER INTERFACE

mknod (cwd, path, mode) adds a new node to file system.

newseg (mode, [cwd, path]) tO Object Manager, expects reply message

with ssn if successful, NAK message

otherwise; cwd I path optional.

copy (ssn, (mode]) to Object Manager; segment copied with

(possibly reduced) access mode; expects

ACK with ssn of new segment, or NAK.

getsz (ssn) to Object Manager; returns the current

valid virtual address range of a segment.

setsz (ssn, max, min) to Object Manager; sets the current size of

a segment.

getrfct (ssn) to Object Manager; requests the current

reference count of a segment.

incrfct (ssn) to Object Manager; increments a segment

reference count.

freeseg (list) to Object Manager; decrements reference

count(s) of list of segments; no reply

expected.

66

USER INTERFACE

translate (ssn,pn, cycletype) to Pager, to repair address translation

fault; expects ACK if immediately

successful, suspend () followed by

resume () if page fault, or NAK if

impossible.

signal (signo) addressed to a child process; intercepted

by its Clerk, which posts indicated signal

(s igno) to the destination process.

suspend () addressed to a child process; intercepted

by its Clerk, which suspends the

destination process.

resume () addressed to a child process; intercepted

by its Clerk; if destination process is

suspended, its state is set to Ready.

67

OTHER PROCESSES

11. OTHER PROCESSES

11.1 1/0 Device Drivers

For UNIX compatibility, 1/0 device drivers should appear as special files in the filk.

system. ARGOS implements device drivers as processes executing on 1/0 controllers,

which are known to the system by their pids or mqids (which are the same).

Translation of special file names to mqids is performed by the FileMan. The / dev

directory is opened by the FileMan at system power-up; as device driver processes are

assigned mqiQs, these are recorded by FileMan in the appropriate positions in this

segment for later use in this translation.

11.2 Name Server

The NameServer process also maintains a list of symbolic name to mqid

translations. Unlike the /etc segment, which only contains translations for I/O

devices, the NameServer may be used by any process to post a translation meaningful

to that process. In this way, processes may cooperate without a requirement for a

common parent process. The NameServer accepts the following messages:

post (mqid, name) an explicit request to make a symbolic

name known.

lookup (name) returns corresponding mqid, or NAK.

remove (mqid) removes all names corresponding to

mqid; may be sent by a process, or by a

local agent when a process which has

posted names terminates.

68

CONCLUSION

ARGOS has been designed to explore operating system concepts for GMMP

multiprocessors. The intended function of the prototype Virtual Port Memory machine

on which ARGOS will run is real-time image processing, information fusion, and

system control, rather than the more typical applications for multiprocessors in large-

scale scientific computations; this has given ARGOS a somewhat different orientation

than that of multiprocessor operating systems designed for the "scientific" regime. It

will be interesting to evaluate ARGOS' performance for the two different application

domains, to see if a real-time orientation significantly affects its ability to ma-nage and

support computationally-intensive processing.

It will also be interesting to see how well the system process partitioning works,

and whether the data structures chosen (especially the SegMap/PageMap arrangement)

are the best we can do. Some areas for future investigation are possibly merging the

Page Frame Manager with the Pager, if the Pager load turns out to be sufficiently light,

and employing variable-sized "regions" versus fixed-size segments for partitioning

system virtual memory.

ACKNOWLEDGEMENTS

The design of ARGOS has drawn on good ideas from many previous operating

systems, including Multics [8], Unix [11, Mach [91, the AT&T Oryx/Pecos system

[10], the Sandia Hawk real-time system [11], and SMRTE (a previous effort by the

author).

Many individuals have contributed ideas and/or criticism to the design of ARGOS,

including John Johnston at NMSU, Jane Gambi!!, Hector Urroz, and others at Bell

69

Laboratories, and Victor Holmes at Sandia National Laboratories. Arthur Karshmer,

Joseph Pfeiffer, and John Johnston at NMSU graciously gave of their time to review

the final draft of this report.

REFERENCES

1. Bach, The Design of the Unix Operating System, Prentice-Hall Software Series,
Kemighan ed., Prentice-Hall, Englewood Cliffs, NJ, 1986.

2. IEEE Std 1003.1-1988, Portable Operating System Interface for Computer
Environments, IEEE, 1988.

3. Johnson, E.E., "Completing an MIMD Multiprocessor Taxonomy," Computer
Architecture News, 16(3): 44-47, 1988.

4. Johnson, E.E., "A Prototype Virtual Port Memory Multiprocessor," Technical
Report NMSU-ECE-88-003, NMSU, May 1988.

5. Johnson, E.E., "The Virtual Port Memory Multiprocessor Architecture," Technical
Report NMSU-ECE-88-001, NMSU, January 1988.

6. Johnson, E.E., "GMMP Multiprocessor Architectures," Proceedings, International
Conference on Computing and Information (1989).

7. Johnson, E.E., "The Virtual Port Memory GMMP Multiprocessor," Proceedings,
International Conference on Computing and Information (1989): 127-130.

8. Organick, E.I., The Multics System: An Examination of Its Structure, MIT Press,
Cambridge, Massachusetts, 1972.

9. Rashid, R.et al., "Machine-independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures," Proceedings, Second
International Conference on Architectural Support for Programming Languages
and Operating Systems (1987): 31-39.

10. Sager, G.R. and al, e., "The Oryx/Pecos Operating System," AT&T Technical
Journal, 64(1): 251-268, 1985.

11. Holmes, V.P. and Harris, D.L., "A Designer's Perspective of the Hawk
Multiprocessor Operating System Kernel," Operating Systems Review, 23(3):
158-172, 1989.

70

GLOSSARY

GLOSSARY

ARGOS 1 a research GMMP operating system.

cwd 39 current working directory; an index into a File Manager

table of open directories; stored in process structure and

sent to File Manager to identify starting point for parsing

relative path names.

DiskMan 57 disk manager process.

ExSeg 13 execution segment of a process; holds its process

structure, stacks, and other record of execution.

familial cone 48 a data structure which links the children of one parent

(siblings) into a ring; the parent has a pointer to one

element of this ring, while all elements of the ring have

pointers to the parent.

far 16 file access record, similar to UNIX inode sans index:

stored in file header block in a file system.

FileMan 38 File Manager process; manages file access and searches

directories.

fn 17 file number; selects one file within a file system (see

fsn); corresponds to Unix inode number.

71

GLOSSARY

fsn 17 file system number (logical disk number); same as the

mqid of the message queue used for requests to that file

system.

FTE 38 file table entry.

gid 14 group identifier, as in Unix.

mqid 14 message queue identifier; an integer composed of the

SSN of the process which created the queue,

concatenated with an index value to distinguish among

the queues owned by a process.

PageMap 49, 50 a linked list of pages accessible by a process which differ

from the corresponding pages in a segment from which

this segment of interest was copied.

pid 15 process identifier; equals message queue number of

kernel message queue for a process, so that messages

may be directed to the pid of a process.

PFM 55 page frame manager process.

pfn 50 page frame number, used as an index by the Page Frame

Manager to identify blocks of physical memory.

pn 50 page number; used by pager as index into segment page

tables; part of virtual address generated by processing

elements.

72

GLOSSARY

PTE 49, 50 page table entry; a full page table is allocated by the

Pager only for the first instance of a segment; all copies

then use PageMaps to list pages in which they differ.

SegMap 48, 49 segment map; a data structure used by the Pager to store

information about an active segment.

sibling ring 48 see familial cone, above; a circularly-linked list of

children of one parent.

ssn 14 system segment number; used by Object Manager, File

Manager, and Pager as an index into segment tables; part

of virtual address generated by processing elements.

uid 14 user identifier, as in Unix.

73

